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The selective detection of ammonia (NH3), nitrogen dioxide (NO,), carbon oxides (CO, and CO), acetone ((CH3),CO), and tolu-

ene (CgHsCHa3) is investigated by means of a gas sensor array based on polyaniline nanocomposites. The array composed by seven

different conductive sensors with composite sensing layers are measured and analyzed using machine learning. Statistical tools,

such as principal component analysis and linear discriminant analysis, are used as dimensionality reduction methods. Five different

classification methods, namely k-nearest neighbors algorithm, support vector machine, random forest, decision tree classifier, and

Gaussian process classification (GPC) are compared to evaluate the accuracy of target gas determination. We found the Gaussian

process classification model trained on features extracted from the data by principal component analysis to be a highly accurate

method reach to 99% of the classification of six different gases.

Introduction

The control and monitoring of toxic gaseous substances, such
as ammonia, nitrogen oxides, and various volatile organic
compounds, is crucial in automotive, defense, aviation,
chemical, medicine, and food industries [1,2]. Research
on chemical sensors is currently focused on the fabrication
of multisensor arrays for enhanced detection and identification
of various chemical compounds. In most cases, the cross-

sensitivity toward different chemical analytes is unavoidable,

regardless of their oxidizing or reducing nature. Many
authors have suggested a number of ways to overcome the
drawbacks of cross-sensitivity/selectivity and reliability
of the sensor arrays [3-5]. One powerful tool to address the
abovementioned drawbacks is the implementation of a
multisensor array combined with appropriate pattern recogni-
tion and classification tools [6]. Recently, classification in

gas sensing applications has been carried out by principal
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component analysis to identify the difference between VOCs,
supported by a vector machine to distinguish between acetone,
nitrogen dioxide, and ammonia, and by a neutral network
model to distinguish between ammonia and formaldehyde gas
[7-9].

In our previous work [10], we demonstrated a combination of
organic (polyaniline, PANI) and inorganic (carbon nanotubes
(CNT), SnO,, TiO,) materials in a gas sensors based on nano-
composite layers with good sensitivity, temperature stability, re-
versibility, which was operating at room temperature. Herein,
we extended our study by applying other nanocomposite
sensing layers, namely PANI/ZnO, PANI/WOj3 (nanopowder),
PANI/WO3 (nanotubes), PANI/In;O3, PANI/Cgq (fullerene),
PANI/nanocrystalline diamond (NCD), and PANI/BaTiOj3,
deposited on a flexible sensor array platform with a new design.
Seven different nanocomposite sensing layers deposited on the
array were exposed to six different gases (ammonia, carbon
dioxide, nitrogen dioxide, carbon monoxide, acetone, and tolu-
ene). Moreover, the obtained data were used for machine

learning classification.

Many pattern recognition models based on intuitive, linear and
nonlinear supervised techniques have been explored in E-nose
data [11,12]. A considerable number of studies have been
implemented in recent years using different statistical analysis
algorithms, like principal component analysis (PCA), linear
discriminant analysis (LDA), k-nearest neighbors algorithm
(KNN), support vector machine (SVM), decision tree classifier
(DT), random forest (RF), and Gaussian process classification
(GPC) in order to enhance the discrimination of gases and get
better selectivity [13]. In this work we suggest a new method in
our classification system by combining the abovementioned
methods and using the output of the two most powerful tech-
niques in dimensionality reduction and increasing inter-
pretability. We apply PCA and LDA as input data for five
machine learning algorithms with a 10-fold cross-validation
method.

The preprocessing stage was implemented by applying PCA
and LDA on the extracted dataset [14,15]. Five different kinds
of flexible pattern recognition algorithms have been used for the
classification of gas sensor data using a 10-fold cross-valida-
tion to reach the highest classification rate.

Results and Discussion

The sensors layers were investigated by scanning electron
microcopy (SEM), Raman spectroscopy, current—voltage and
temperature analysis, and gas sensing analysis. Further, statis-
tical classification analysis was implemented for the evaluation
of target gases.
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Scanning electron microscopy and Raman

spectroscopy

The surface morphology and uniformity of additives in PANI of
the deposited active layers were examined by scanning electron
microscopy (TESCAN FERA3 GM), as shown in Figure 1a-h.
All nanocomposite active layers, that is, PANI/ZnO, PANI/
WOj3 (nanopowder), PANI/WO3 (nanowires), PANI/In;03,
PANI/Cgg, PANI/NCD, and PANI/BaTiO3 have similar mor-
phological features with a uniform distribution of additives in

© (h)

Figure 1: SEM micrographs of deposited layers on an interdigital

transducer structure: (a) PANI/ZnO, (b) PANI/WOg3 (nanopowder),
(c) PANI/WO3 (nanowire), (d) PANI/InzOg, (e) PANI/Cgy, (f) PANI/
NCD, (g) PANI/BaTiOg, and (h) pristine PANI.
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polyaniline. We can observe small ZnO flakes and WO3 nano-

wires homogeneously distributed in the layers.

Pristine PANI was examined by SEM (Figure 1h) and Raman
spectroscopy (Raman spectrometer Renishaw inVia Qontor) at
room temperature with 633 nm excitation wavelength
(Figure 2). The spectrum of pristine PANI is typical of the
emeraldine salt, showing the following main bands:
(1) 748 em™! (Q ring bending, C—C ring deformation); (2) 810
and 870 cm™! (out-of-plane C—H vibrations in the aromatic

Intensity (a.u.)
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rings); (3) 1169 em™! (C-H bending of the quinoid rings);
(4) 1221 and 1260 cm™! (C-N in benzene diamine units);
(5) 1336 cm™! (C-N*, characteristic band of the polaron radical
cation); (6) 1412 cm™! (phenazine structures); (7) 1498 cm™!
(C=N of the quinoid nonprotonated diimine units);
(8) 1590 cm™! (C=C stretching vibration of the quinonoid ring)
[16,17].

Current-voltage and temperature analysis
Figure 3 shows current—voltage characteristics of active layers.
These characteristics were examined for currents up to 200 mA
and exhibit an almost linear character.

Figure 4 shows the temperature dependence of the relative
resistance of PANI/nanocomposite layers for different tempera-
tures. All layers exhibit a decrease in resistance with increasing
temperature and composite layers exhibit lower temperature
dependences in comparison to a pristine PANI layer. The resis-
tance R and the average temperature coefficient of resistance
(TCRs) values of the prepared sensing layers are given in
Table 1. All active layers have a negative temperature coeffi-
cient. The resistivity of these nanocomposites depends on the
p—n depletion layer width on the interface between the n-type
nanoparticles and the surrounding p-type PANi molecules.

Gas sensing analysis
Raman shift (cm™) The gas sensing characterizations of sensitive layers were per-
) formed using a custom-built apparatus (Figure 5). The charac-
Figure 2: The Raman spectra of the PANI. terization system consists of mass flow controllers (Bronkhorst
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Figure 3: Current-voltage characteristics of active layers.
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Figure 4: Temperature dependence characteristics of active layers.

Table 1: Average TCRs of prepared sensitive layers in range from 20

to 80 °C.

Layer

PANI+ZnO

PANI+WOj3; (nanopowder)
PANI+WOj3 (nanowires)

PAN I+In203
PANI+Cgo
PANI+NCD
PANI+BaTiO3
PANI

Figure 5: Schematic diagram of the gas sensing characterizations apparatus.

High-Tech) for setting the required gas concentration, a source-
meter (Keithley, Model 2400) for resistance measurement of

Ro (Q) TCR (K™ active layers, an air-tight chamber with electrical feedthroughs
for the sensor array, a relay multiplexor for switching four
85123 -0.012 sensor elements, and a Labview-based data acquisition system.
1764 -0.009
25906 -0.009 The sensing layers were tested towards carbon dioxide
50750 —0.011 (250 ppm CO,), carbon monoxide (25 ppm), ammonia
2222 _88:: (25 ppm), nitrogen dioxide (25 ppm), acetone (6%), toluene
4338 _010096 (500 ppm) and humid air (RH) in synthetic air (SA) at room
e temperature. The response of the sensing layers was calculated
4240 ~0.012 i ,
by the relative resistance change:
Bubbler
for generation
of volatile
organic
compounds
(ggz Testing
NH., gas
NO,,
Acetone,
Toluene)
] Test Gas
chamber 9ouﬂet
Carrier outlet \l/
(synthetic %% | Muttiplexer| [ source
Air) — meter
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RO 2

where Ry is the resistance at room temperature in synthetic air
and Ry is the resistance of the sensor in the presence of the spe-
cific gas.

The dynamic responses of sensing layers for gases are displayed
in Figure 6. The experiment consisted of 5 min of sensor expo-
sure to a certain gas concentration and 5 min of purging at a
flow rate of 100 mL-s~!. It is evident that all active layers have
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the highest sensitivity and clear response to NH3. All active
composite layers except PANI+ZnO exhibit a higher sensitivity
toward NHj3 in comparison to a pristine PANI layer.
PANI+ZnO composite shows the lowest sensitivity to all gases.
Moreover, the resistance decreases when the polyaniline com-
posite sensing layers are exposed to toluene. In addition, the
sensor responses of all sensing layers to NO, gas are nearly

three times lower than those to NHj3.

Due to the high sensitivity to NHj gas, the sensing layers were
also tested towards different concentrations of NH3 at room
temperature (Figure 7). It is evident that all sensing layers
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Figure 6: Gas characterization of active layers towards (a) 25 ppm of NHg, (b) 25 ppm of NOy, (c) 25 ppm of CO, (d) 250 ppm of CO», (e) 6000 ppm

of acetone, and (f) 500 ppm of toluene at room temperature.
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Figure 7: The responses of sensing layers for different concentrations of NHs.

demonstrate an enhancement in sensitivity to the highest gas
concentration (50 ppm) as well as incomplete reversibility.

When the operating temperature increased up to 80 °C, the

sensing layers showed an at least three times lower response to

ammonia in contrast to the room temperature measurements
(Figure 7), but with almost complete reversibility (Figure 8).

The gas sensing mechanism of nanocomposite layers based on
PANI was discussed in [10]. Polyaniline is known as one of the
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Figure 8: Gas characterization of active layers to different concentrations of NHz at 80 °C.
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most famous p-type conductive polymers. During the exposure
to a reducing gas (NHj3), the emeraldine salt form of polyani-
line is converted to the emeraldine base form leading to an
increase in resistance due to the decrease of hole density within
the p-type film [18]. In the case of the hybrid structures, a p—n
heterojunction is formed between polyaniline and n-type nano-
structures such as ZnO, WO3, In;O3, or fullerene [19]. The
protons from polyaniline are transferred to the NH3 molecules.
This results in a widening of the depletion layers on p—n junc-
tions and, thus, the resistance increases [18]. All these effects
are reversible when the reducing gas is replaced by air. Beside
these effects, nanostructures added into polyaniline increase the
initial resistance due to larger disorder and deformation of the
polyaniline conjugation chains. The summary of the gas sensor
responses for all active layers is shown in Figure 9. All layers
show an increasing resistivity as a clear response to CO, CO,,
NHj3, and NO,.

140 — 7
CO, . CO : NH, . NO, :Acetone:Toluene]
1204 250 ppm : 25PPM : 25 ppm : 25 ppm :6000 ppm: 500 ppm|
: : Il FAN1+2n0
100 4 I PAN+WO; |
;3 (nanopowder) 1
- 80 AN+ WO5 e
2 (nanowire) 1
S 60- [ PANI+IN 03 |4
%
@ I PANI+Cq
o 40 T PANI+NCD |+
[_IPANI+BaTiOg
20 - I AN
0 ' ‘

Figure 9: The summary of the gas sensor responses for all active
layers.

Additionally, to exclude the influence of humidity on the sensor
signal, the sensor arrays were exposed to various relative
humidity levels ranging from 20% to 80% (Figure 10). The ob-
tained results show a decreasing sensor response with increas-
ing RH% value. This change in response toward relative
humidity is due to the adsorption of water molecules and an
increase of charge concentration due to PANI doping and the
formation of charge transfer complexes [20]. The decrease of
electrical resistance is caused by the greater mobility of the
dopant ions, related to the development of PANI chains.
Furthermore, the swelling effect contributes to the change in
resistivity [21].

Statistical classification analysis
A data preprocessing stage was applied on the gas sensor

responses to improve the overall pattern analysis performance.

Beilstein J. Nanotechnol. 2022, 13, 411-423.

0.0 T T T i T
—o— PANI+ZnO
—o— PANI+WO,
(nanopowder)
-0.2 1 —— PANI+WO3s | |
(nanowire)
3 PANI+In,0,
!ZQ'OA' —o— PANI+Cgo
= PANI+NCD | H
mo PANI+BaTiO,|
Ql: —o— PANI
L -0.64
-0.8
'1 .0 T T T T T

20 30 40 50 60 70 80
Relative humidity (%)

Figure 10: RH dependences of the sensing layers.

It was implemented by applying PCA and LDA on the extracted
dataset of exposing six different gases to sensor arrays with
seven different PANI/nanocomposite sensing layers. Figure 11
presents two-dimensional LDA and PCA projections of the
extracted features. Regarding the LDA results, LDA1 describes
approximately 72% and LDA?2 describes 20.6% of data varia-

LDA
(a) ®
100
® 50
© ®
o o
N 0 e
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—100{ ® €O
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Figure 11: Two-dimensional (a) LDA and (b) PCA projections of
extracted features.
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tion. By using the LDA method, a good classification with
clearly separated clusters is obtained for NO,, CO,, acetone,
and NHj3, but an overlap (overlaps are highlighted by oval-
shaped drawings) was detected between CO and toluene.
Applying the PCA method, we found that PCA1 describes
approximately 94%, while PCA2 only 3.6% of data variation.
These results demonstrate that PCA2 could be neglected in
comparison with PCA1. Therefore, by analyzing the data
projection on PCA1 to evaluate the behavior of the sensors, a
high classification in clearly separated clusters is obtained for
all gases via PCA. However, PCA and LDA results should be
evaluated by machine learning algorithms for high accuracy.
The generated feature set by PCA and LDA was provided to the
classification algorithms as input vectors, Then, the training/
testing process of SVM, KNN, DT, RF, and GPC classifiers
was executed by using the 10-fold and 2-fold cross-validation
approach. Table 2 shows the classification rate percentage of
the sensor array after applying different classification algo-
rithms.

Table 2: Gas classification rate.

K- fold

cross-validation =10 k=2

Classifier PCA (%) LDA (%) PCA (%) LDA (%)
KNN 89 69 68 55

SVM 73 77 57 61

RF 97 78 71 57

DT 96 72 65 52

GPC 99 74 85 58

For visualization, Figure 12 illustrates the classification accu-
racy of the test samples based on the presented five classifiers.
The result shows that, by applying 10-fold cross-validation
method, 10-90% of training and test samples were analyzed.
KNN, RF, DT, and GPC classifiers yielded a higher classifica-
tion rate when the PCA method was used as input vector. A dif-
ferent behavior was detected for SVM, where a higher classifi-
cation rate was achieved by the LDA method as input vector for
SVM. The highest rate with 99% classification of the target
gases was achieved by using PCA as input vector to train the
GPC classifier. Results show that using a smaller amount of
training samples, such as the 2-fold cross-validation method in
which 50% of training and test samples were analyzed, could
strongly decrease the classification rate. In the case of the RF
classifier, classification decreased by 30%. The same result of a
30% decrease was obtained for KNN. However, GPC still
shows a very high classification rate (85%) even with 50% less

training samples, which proves the high capacity and powerful
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Figure 12: Total classification accuracy using the five classifiers SVM,
KNN, DT, RF, and GPC with K-fold cross-validation (K = 2, K = 10).

discrimination of using the PCA-GPC combination for E-nose

and gas sensor applications.

The usage of a powerful classification system based on statis-
tical analysis and machine learning algorithms is a prime need
for sensing applications in different fields, such as gas detec-
tion and monitoring [22,23], food industry [24], and agriculture
[25]. However, the potential of such electronic nose systems
varies according to the implemented classification system. Only
between two and four different statistical analysis and classifi-
cation algorithms were used in the cited literature [22-25]. In
this work, we developed a robust system with seven different
mathematical algorithms and we examined the interaction be-
tween these algorithms. The seven algorithms were studied in
deep using different combinations and the highest classification
rate was obtained by PCA/GPC.

Conclusion
We presented the fabrication and characterization of seven dif-

ferent composite sensors based on polyaniline. These sensors
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were used in gas sensing arrays. The sensitivity and selectivity
of the gas sensing system was successfully tested on a set of six
different gases. The improvement of the selectivity was
analyzed by implementation of a complex statistical classifica-
tion system. The strength of statistical analysis and classifica-
tion algorithms was determined and was based on several
factors such as data field application, parameters, behavior of
the system, and the convenience of data behavior and the data
correlation regarding the mathematical algorithms and calcula-
tions. For different data patterns the algorithms show different
strength and reliability. For our system it was possible to
perform a suitable preprocessing and feature selection of the
dataset by PCA for powerful predictions with uncertainty deter-
mined by GPC, which summarizes the distribution of random
variables and define the covariance function of the data, a
crucial ingredient for our system predictions. The highest classi-
fication rate of about 99% was obtained for our classification
system using PCA and GPC.

Experimental

Sensor array fabrication

The sensor array with four interdigitated electrode systems was
manufactured as a flexible printed circuit board (DuPont
Pyralux AP8535 with 75 pm thickness, double-sided, copper-
clad laminate in an all-polyimide composite of polyimide film
bonded to copper foil). It contains the heating elements and the
temperature sensors for the temperature controlling of indi-
vidual sensing layers. The heating element can also be used for
the desorption of measured gases or heating slightly above the
ambient temperature in order to reduce temperature fluctuation.
The 18 um thick Cu interdigitated electrodes were covered with

a 12 pm thick gold layer to improve the corrosion resistance.
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The width and spacing of interdigitated electrodes are 100 pm.
The heating element (surface-mounted device SMD0402
resistor with an electric resistance of 50 Q) and a platinum tem-
perature sensor (SMD0603 Pt1000) are placed on the bottom
side of each sensor by soldering with Sng ¢3Pbg 37. The sensor
size array is 16.2 mm (width) x 16.2 mm (length) with the
sensing layer size of 1.7 mm X 1.7 mm. A pin header connector

is used for connection of the sensor array.

Sensor arrays with PANI/nanocomposite (PANI/ZnO, PANI/
WO3 (nanopowder), PANI/WOj3 (nanowires), PANI/In,03,
PANI/Cgo, PANI/NCD, and PANI/BaTiO3) sensing layers were
fabricated similarly as reported in [10]. The whole fabrication

process of the sensor array is described in Figure 13.

First, the protonated emeraldine salt form of PANI was pre-
pared by oxidation of 0.2 M aniline hydrochloride with 0.25 M
ammonium persulfate at room temperature (25 °C). The precipi-
tate obtained after the polymerization was filtered and purified
by 0.2 M hydrochloric acid and acetone. Subsequently, pure

polyaniline was dried over silica gel in a desiccator for 24 h.

Next, the dispersion solutions were prepared by mixing 24 mg
PANI and 5 mg additives (zinc oxide, two forms of tungsten
oxide, indium oxide, fullerene, NCD, and barium titanate) in
2 mL xylene. Table 3 shows properties of the used additives.
The prepared solutions were mixed in a shaker for 30 min and
subsequently ultrasonicated for 30 min. Finally, the obtained
dispersion solutions were deposited by a micropipette on the
interdigitated electrode arrays. After that, the deposited sensor
layers were dried using the integrated heating elements at 60 °C

for 2 h and whole sensor array was subsequently dried in a

1. Preparation of pure PANi => 2. Preparation of dispersion solution =» 3. Deposition on array platform

Aniline Amonium PANi Additive Xylene Exposure
hydrchloride persulfate (emeraldine salt) (ZnO, WO.,,...) of sensor platform
C,H,NH,-HCI (NHJgSgO; 24 mg 5 mg 2 m/ to HMDS

259g(20mm0/) 5. 779-('-25,77,”0/) (CH.),SiNHSI(CHy),

Water Water Deposition

50 ml H,O 50 mi H.0 of 0.4l
Polymerization l dispersion
solution
Collection o
of polymerized PANi DISPERSION
SOLUTION
T3 Purification by 0.2 M Mixing ooo o
l hydrochloric acid shaker 200 rpm for 30 min OO (o) c
(-52\ (HCI) and acetone ultrasonicated for 30 min Drying O u/Au IDT electrods
(C.H,0) by heating elements width and spacing 100 pm
o at 60 °C
and in desiccator )
Collection by silica gel for 24 Heating
. of pure PANi element
Drying by (rezsitance 50 Q)
silica gel

PURE PANi

& (emeraldine salt)
BRI

e cnoen

in desiccator
for 24 hours

Figure 13: Sensor array fabrication.

Temperature

sensor

(Pt1000)
Bottom view

of sensor elemnt
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Table 3: Properties of the used additives.

Beilstein J. Nanotechnol. 2022, 13, 411-423.

Additive Properties

zinc oxide (ZnO) nanopowder, particle size < 50 nm, surface area > 10.8 m2-g~"

tungsten oxide (WOsg) nanopowder, particle size < 100 nm

tungsten oxide (WOsg) nanowires, diameter 50 nm, length 10 pm

indium oxide (In2O3) nanopowder, particle size < 100 nm, 99.9% trace metals basis

fullerene (Cgp) sublimed form

nanocrystalline diamond (NCD) nanopowder, particle size <5 nm

barium(1V) titanate (BaTiOg) nanopowder (cubic crystalline phase), particle size < 100 nm, 299% trace metals basis

desiccator over silica gel for 24 h. Before the deposition, the
sensor array platforms were cleaned in acetone and isopropyl
alcohol for 15 min and then exposed to hexamethyldisilazane
(HMDS) for 2 h to improve the adhesion of sensing layers.

Figure 14 demonstrates the top view of sensor array with nano-
composite sensing layers and the bottom view with heating ele-
ments and temperature sensors [26].

Statistical classification system

The classification capability for the gas sensor arrays was
analyzed and studied to achieve the highest classification rate
by constructing a classification system according to the block
diagram in Figure 15. PCA and LDA were implemented and
applied in order to extract the data measured from seven sensing
layers, namely PANI/ZnO, PANI/WO3 (nanopowder), PANI/
WOj3 (nanowires), PANI/In,O3, PANI/Cgp, PANI/NCD, and
PANI/BaTiO3, and the result was used to train/test five differ-
ent classification algorithms. In this work, KNN, SVM, RF, DT,
and GPC were used to achieve the highest classification rate.

This paragraph and the following paragraph about PCA and
LDA follow closely the corresponding content in [27]. PCA is a

(RROVRD ()

Sensor
response

Figure 15: Smart sensing system block diagram.
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Figure 14: Sensor array with nanocomposite sensing layers with
dimensions and bottom view with heating elements and temperature
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linear transformation that preserves as much data variance as
possible. PCA chooses a matrix T that minimizes the mean
squared distance between original data and those reconstructed

from reduced data. It has been shown that

Tpcp = UATY2, @

where U and A are the eigenvector matrix and the diagonal
eigenvalues matrix of the data covariance matrix, respectively.
PCA has been extensively used for gas sensor applications [28-
30].

LDA provides a linear projection of the data with (¢ — 1) dimen-
sions, by considering the scatter of data within each class and
across classes. Projection directions are those that maximize the
inter-class separation of the projected data. The LDA transfor-
mation matrix is given by

Tipa = SWA%}/ZSB, A3)

where Sw and Aw are, respectively, the eigenvectors matrix
and the diagonal eigenvalues matrix of the within-class scatter
W. Sg is the eigenvectors matrix of the between-class scatter B.
LDA was previously used for gas detection applications
[31,32].

KNN is a supervised algorithm that is used for classification
and regression, KNN is based on the minimum distance of the
unknown sample to the training samples, by selecting the speci-
fied number of points (k) that are closest to the unknown sam-
ple [33]. Then the unknown sample can be identified by the
majority votes.

SVM is an algorithm capable of performing classification and
regression. The SVM algorithm enhances the classification
function by finding the hyperplane in an N-dimensional space
that has the widest margin between training data and class
boundaries. Many possible hyperplanes could be chosen, but
SVM aims to find a plane with the maximum margin, that is,
the maximum distance between data points of different classes
in feature space. A linear decision boundary is constructed in

form of a hyperplane:

ol x+b=0. )

A support vector machine takes the input vectors and outputs a

hyperplane that separates different classes. Hyperplanes are
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decision boundaries that help to classify different classes
[34,35]. Samples with an unknown class will be classified by
the decision boundary, samples falling on either side of the

hyperplane can be attributed to different classes.

DT is a learning algorithm. It is a tree-structured classifier
where the classification model is performed by a series of test
questions and conditions with finite depth based on the features
of input data in a tree structure. After the decision tree has been
built, sorting of an unknown sample is simple. It begins with the
top node of the tree and goes to the leaf. It undergoes distribu-
tion channels of the nodes and it follows to the next node, for
which a new condition is subjected to the sample till it reaches
the leaf node. The unknown sample is labeled and sorted, and a

new and unknown sample is classified [36,37].

RF is an ensemble method for classification and regression
tasks that uses multiple models of several DT to achieve a better
output classification. The concept of the algorithm to build the
structure is to select random samples from the dataset and create
a decision tree from each sample and to get prediction results
from each decision tree created [38]. The RF consists of a large
number of individual decision trees. Each tree votes for a class
prediction in the random forest, and the prediction with the
most votes becomes the prediction of random forest.

GPC is a supervised learning method and a generalization of the
Gaussian distribution of probability, which can be used for ad-
vanced non-parametric machine learning algorithms for classifi-
cation problems [39]. GPC puts a Gaussian prior over a latent
function, which is then squashed by a logistic function to obtain
the probabilistic classification. In GPC, the posterior of the
latent function is not Gaussian [40]. In GPC, for a given dataset,
the training data xy,..., x, are chosen with the corresponding
class labels y = (y1,..., yn), to predict the class of a test sample:

p(yi =j|xl~)=q)(fl-(xl-)) i=1..,n, j=l,...,k,(1), (5)

where ® denotes the standard normal cumulative distribution
function, that is,

D(z)= j N (x0,1)dx.

—00

Gaussian process classification is not a parametric model.
Instead, training is carried out to get hyperparameters that are
needed for the covariance function and posterior. The target of
GPC is to obtain the distribution of a latent variable correspond-
ing to test sample x*:
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p(f*
:Ip(f*‘xl,...,xn,x*,f)p(f|xl,-~-,xnay)dfa

*
X[sees Xy Vs X )

6

where p(flxy, ..
and this distribution subsequently will be used to predict the

., Xp, y) is the posterior over the latent variables,

probabilistic prediction:
* . *
p(y = j‘xl,...,xn,y,x )

:jp(y* fj*)p(f]* |x1,...,xn,y)df;‘

Acknowledgements

The classification system was processed by Scikit-learn, which

@)

is one of the most popular machine learning libraries of python.
Anaconda installer for Python 3.8 was used to run all the
libraries and Jupyter Notebooks. This work contains parts from
the thesis of J. Kroutil, "Gas sensor array with nanocomposite

films", Czech Technical University in Prague, 2019.

Funding

This work was supported by the Czech Science Foundation
project No. GA22-04533S ,,Printed heterogeneous gas sensor
arrays with enhanced sensitivity and selectivity®, by the grant of
CTU No. SGS20/176/0OHK3/3T/13, by the project Centre of the
Advanced Applied Natural Sciences No. CZ.02.1.01/0.0/0.0/
16_019/0000778 supported by the Operation Programme
Research, Development and Education co-financed by Euro-
pean Comunity and by Ministry of Education Czech Republic
and by the grant CzechNanoLab Research Infrastructure sup-
ported by MEYS CR (LM2018110).

ORCID® iDs

Jiri Kroutil - https://orcid.org/0000-0002-0644-8135
Alexandr Laposa - https://orcid.org/0000-0002-7529-9567
Ali Ahmad - https://orcid.org/0000-0001-9673-6802
Ladislav Klimsa - https://orcid.org/0000-0002-3653-8254

References

1. Hosseini, S. H.; Khalkhali, R. A.; Noor, P. Monatsh. Chem. 2010, 141,
1049-1053. doi:10.1007/s00706-010-0374-5

2. Akbar, S.; Dutta, P.; Lee, C. Int. J. Appl. Ceram. Technol. 2006, 3,
302-311. doi:10.1111/j.1744-7402.2006.02084.x

3. Korotcenkov, G.; Han, S. D.; Cho, B. K.; Brinzari, V.
Crit. Rev. Solid State Mater. Sci. 2009, 34, 1-17.
doi:10.1080/10408430902815725

4. Korotcenkov, G.; Cho, B. K. Sens. Actuators, B 2013, 188, 709-728.
doi:10.1016/j.snb.2013.07.101

5. Mao, Y.; Park, T. J.; Wong, S. S. Chem. Commun. 2005, 46,
5721-5735. doi:10.1039/b509960a

Beilstein J. Nanotechnol. 2022, 13, 411-423.

6. Zee, F.; Judy, J. W. Sens. Actuators, B 2001, 72, 120-128.
doi:10.1016/s0925-4005(00)00638-9

7. Liu, S. F.; Moh, L. C. H.; Swager, T. M. Chem. Mater. 2015, 27,
3560-3563. doi:10.1021/acs.chemmater.5b00153

8. Pugh, D. C.; Newton, E. J.; Naik, A. J. T.; Hailes, S. M. V.; Parkin, I. P.
J. Mater. Chem. A 2014, 2, 4758-4764. doi:10.1039/c3ta15049f

9. Zhang, D,; Liu, J.; Jiang, C.; Liu, A.; Xia, B. Sens. Actuators, B 2017,
240, 55-65. doi:10.1016/j.snb.2016.08.085

10. Kroutil, J.; Laposa, A.; Voves, J.; Davydova, M.; Nahlik, J.; Kulha, P.;
Husak, M. IEEE Sens. J. 2018, 18, 3759-3766.
doi:10.1109/jsen.2018.2811461

11.Zhang, L.; Liu, Y.; Deng, P. IEEE Trans. Instrum. Meas. 2017, 66,
1679-1692. doi:10.1109/tim.2017.2669818

12.Zhang, L.; Zhang, D.; Yin, X.; Liu, Y. [EEE Sens. J. 2016, 16,
4919-4931. doi:10.1109/jsen.2016.2551743

13.Zhang, L.; Tian, F.; Nie, H.; Dang, L.; Li, G.; Ye, Q.; Kadri, C.
Sens. Actuators, B 2012, 174, 114-125. doi:10.1016/j.snb.2012.07.021

14.Kiselev, I.; Sommer, M.; Kaur Mann, J.; Sysoev, V. V. [EEE Sens. J.
2010, 70, 849-855. doi:10.1109/jsen.2009.2036441

15. Ahluwalia, A.; De Rossi, D. Encyclopedia of Materials: Science and
Technology; 2001; pp 344-347. doi:10.1016/b0-08-043152-6/00071-1

16. Salvatierra, R. V.; Moura, L. G.; Oliveira, M. M.; Pimenta, M. A.;
Zarbin, A. J. G. J. Raman Spectrosc. 2012, 43, 1094—-1100.
doi:10.1002/jrs.3144

17.Trchova, M.; Moravkova, Z.; Blaha, M.; Stejskal, J. Electrochim. Acta
2014, 122, 28-38. doi:10.1016/j.electacta.2013.10.133

18.Nie, Q.; Pang, Z.; Lu, H.; Cai, Y.; Wei, Q. Beilstein J. Nanotechnol.
2016, 7, 1312-1321. doi:10.3762/bjnano.7.122

19.Kulkarni, S. B.; Navale, Y. H.; Navale, S. T.; Stadler, F. J.;
Ramgir, N. S.; Patil, V. B. Sens. Actuators, B 2019, 288, 279-288.
doi:10.1016/j.snb.2019.02.094

20.Chani, M. T. S.; Karimov, K. S.; Khalid, F. A.; Moiz, S. A.
Solid State Sci. 2013, 18, 78-82.
doi:10.1016/j.solidstatesciences.2013.01.005

21. Anisimov, Y. A.; Evitts, R. W.; Cree, D. E.; Wilson, L. D.
Polymers (Basel, Switz.) 2021, 13, 2722. doi:10.3390/polym13162722

22.Robin, Y.; Goodarzi, P.; Baur, T.; Schultealbert, C.; Schutze, A.;
Schneider, T. Machine Learning based calibration time reduction for
Gas Sensors in Temperature Cycled Operation. In 2021 IEEE
International Instrumentation and Measurement Technology
Conference, 12MTC, Glasgow, UK, May 17-20, 2021; IEEE, 2021;
pp 1-6.

283.Brahim-Belhouari, S.; Bermak, A. Pattern Recognit. Lett. 2005, 26,
699-706. doi:10.1016/j.patrec.2004.09.020

24.Tan, J.; Balasubramanian, B.; Sukha, D.; Ramkissoon, S.;
Umaharan, P. J. Food Process Eng. 2019, 42. doi:10.1111/jfpe.13175

25. Amkor, A.; Maaider, K.; El Barbri, N. Sens. Actuators, A 2021, 328,
112787. doi:10.1016/j.sna.2021.112787

26. Kroutil, J. Gas sensor array with nanocompositefilms. Ph.D. Thesis,
Czech Technical University in Prague, 2019.

27.Bermak, A.; Belhouari, S. B.; Shi, M.; Martinez, D. Pattern recognition
techniques for odor discrimination in gas sensor array; Encyclopedia of
Sensors, Vol. X; 2006; pp 1-17.

28. Kermit, M.; Tomic, O. IEEE Sens. J. 2003, 3, 218-228.
doi:10.1109/jsen.2002.807488

29.McEntegart, C. M.; Penrose, W. R.; Strathmann, S.; Stetter, J. R.
Sens. Actuators, B 2000, 70, 170-176.
doi:10.1016/s0925-4005(00)00561-x

30. Penza, M.; Cassano, G.; Tortorella, F.; Zaccaria, G. Sens. Actuators, B
2001, 73, 76-87. doi:10.1016/s0925-4005(00)00687-0

422


https://orcid.org/0000-0002-0644-8135
https://orcid.org/0000-0002-7529-9567
https://orcid.org/0000-0001-9673-6802
https://orcid.org/0000-0002-3653-8254
https://doi.org/10.1007%2Fs00706-010-0374-5
https://doi.org/10.1111%2Fj.1744-7402.2006.02084.x
https://doi.org/10.1080%2F10408430902815725
https://doi.org/10.1016%2Fj.snb.2013.07.101
https://doi.org/10.1039%2Fb509960a
https://doi.org/10.1016%2Fs0925-4005%2800%2900638-9
https://doi.org/10.1021%2Facs.chemmater.5b00153
https://doi.org/10.1039%2Fc3ta15049f
https://doi.org/10.1016%2Fj.snb.2016.08.085
https://doi.org/10.1109%2Fjsen.2018.2811461
https://doi.org/10.1109%2Ftim.2017.2669818
https://doi.org/10.1109%2Fjsen.2016.2551743
https://doi.org/10.1016%2Fj.snb.2012.07.021
https://doi.org/10.1109%2Fjsen.2009.2036441
https://doi.org/10.1016%2Fb0-08-043152-6%2F00071-1
https://doi.org/10.1002%2Fjrs.3144
https://doi.org/10.1016%2Fj.electacta.2013.10.133
https://doi.org/10.3762%2Fbjnano.7.122
https://doi.org/10.1016%2Fj.snb.2019.02.094
https://doi.org/10.1016%2Fj.solidstatesciences.2013.01.005
https://doi.org/10.3390%2Fpolym13162722
https://doi.org/10.1016%2Fj.patrec.2004.09.020
https://doi.org/10.1111%2Fjfpe.13175
https://doi.org/10.1016%2Fj.sna.2021.112787
https://doi.org/10.1109%2Fjsen.2002.807488
https://doi.org/10.1016%2Fs0925-4005%2800%2900561-x
https://doi.org/10.1016%2Fs0925-4005%2800%2900687-0

31. Aishima, T. J. Agric. Food Chem. 1991, 39, 752-756.
doi:10.1021/jf000042027

32. Brahim-Belhouari, S.; Bermak, A.; Wei, G.; Chan, P. C. H. A
comparative study of density models for gas identification using
microelectronic gas sensor. In Proceedings of the 3rd IEEE
International Symposium on Signal Processing and Information
Technology, ISSPIT 2003, Darmstadt, Germany, Dec 17, 2003; IEEE,
2003; pp 138—141. doi:10.1109/isspit.2003.1341079

33. Petersson, H. Multivariate Exploration and Processing of Sensor
Data-applications with multidimensional sensor systems. Ph.D. Thesis,
Linkdpings Universitet, Sweden, 2008.

34.Boser, B. E.; Guyon, I. M.; Vapnik, V. N. A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual ACM Workshop
on Computational Learning Theory, Fifth Annual Workshop on
Computational Learning Theory, Pittsburgh, PA, USA; Association for
Computing Machinery: New York, NY, USA, 1992; pp 144-152.
doi:10.1145/130385.130401

35. Cortes, C.; Vapnik, V. Mach. Learn. 1995, 20, 273-297.
doi:10.1023/a:1022627411411

36.Cho, J.; Li, X.; Gu, Z.; Kurup, P. U. IEEE Sens. J. 2012, 12,
2384-2391. doi:10.1109/jsen.2011.2182042

37.Li, Q.; Bermak, A. J. Low Power Electron. Appl. 2011, 1, 45-58.
doi:10.3390/jlpea1010045

38.Shi, T.; Horvath, S. J. Comput. Graph. Stat. 2006, 15, 118—138.
doi:10.1198/106186006x94072

39.Yuan, F.; Xia, X.; Shi, J.; Li, H.; Li, G. IEEE Access 2017, 5,
6833-6841. doi:10.1109/access.2017.2697408

40.Rasmussen, C. E.; Williams, C. K. |. Gaussian Processes for Machine
Learning; The MIT Press, 2006. doi:10.7551/mitpress/3206.001.0001

License and Terms

This is an open access article licensed under the terms of
the Beilstein-Institut Open Access License Agreement

(https://www.beilstein-journals.org/bjnano/terms), which is

identical to the Creative Commons Attribution 4.0
International License

(https://creativecommons.org/licenses/by/4.0). The reuse of

material under this license requires that the author(s),
source and license are credited. Third-party material in this
article could be subject to other licenses (typically indicated
in the credit line), and in this case, users are required to
obtain permission from the license holder to reuse the
material.

The definitive version of this article is the electronic one
which can be found at:
https://doi.org/10.3762/bjnano.13.34

Beilstein J. Nanotechnol. 2022, 13, 411-423.

423


https://doi.org/10.1021%2Fjf00004a027
https://doi.org/10.1109%2Fisspit.2003.1341079
https://doi.org/10.1145%2F130385.130401
https://doi.org/10.1023%2Fa%3A1022627411411
https://doi.org/10.1109%2Fjsen.2011.2182042
https://doi.org/10.3390%2Fjlpea1010045
https://doi.org/10.1198%2F106186006x94072
https://doi.org/10.1109%2Faccess.2017.2697408
https://doi.org/10.7551%2Fmitpress%2F3206.001.0001
https://www.beilstein-journals.org/bjnano/terms
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.3762/bjnano.13.34

	Abstract
	Introduction
	Results and Discussion
	Scanning electron microscopy and Raman spectroscopy
	Current–voltage and temperature analysis
	Gas sensing analysis
	Statistical classification analysis

	Conclusion
	Experimental
	Sensor array fabrication
	Statistical classification system

	Acknowledgements
	Funding
	ORCID iDs
	References

